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Abstract. Traditional self-supervised contrastive learning approaches
regard different views of the same skeleton sequence as a positive pair for
the contrastive loss. While existing methods exploit cross-modal retrieval
algorithm of the same skeleton sequence to select positives. The com-
mon idea in these work is the following: ignore using other views after
data augmentation to obtain more positives. Therefore, we propose a
novel and generic Cross-View Nearest Neighbor Contrastive Learning
framework for self-supervised action Representation (CrosNNCLR) at
the view-level, which can be flexibly integrated into contrastive learning
networks in a plug-and-play manner. CrosNNCLR utilizes different views
of skeleton augmentation to obtain the nearest neighbors from features in
latent space and consider them as positives embeddings. Extensive exper-
iments on NTU RGB+D 60/120 and PKU-MMD datasets have shown
that our CrosNNCLR can outperform previous state-of-the-art meth-
ods. Specifically, when equipped with CrosNNCLR, the performance of
SkeletonCLR and AimCLR is improved by 0.4%∼12.3% and 0.3%∼1.9%,
respectively.

Keywords: Self-supervised learning · Plug-and-play · Cross-view
nearest neighbor contrastive learning · Action representation

1 Introduction

In the research field of robot action planning, the action of joints is an impor-
tant factor to evaluate the goodness of robot products, which can be associ-
ated with human action analysis. As a research hotspot in computer vision,
human action analysis plays an important part in video understanding [1]. Early
researchers employ supervised learning methods [2–4] to study human action
potential dynamics based on RGB frames, e.g., a two-stream network [5], spatial-
temporal attention model [6], and LSTM network [7]. However, these visual
representations are not robust to various backgrounds and appearances. There-
fore, researchers focus on the human skeleton dataset, which offer light-weight
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representations, attracting many people to research skeleton-based action recog-
nition [8–10], e.g., Part-Aware LSTM [11] treats each joint point of each frame
of skeleton sequence as an LSTM unit, and performs LSTM operations in both
temporal and spatial dimensions. MS-G3D [12] proposes a multi-scale spatial-
temporal aggregation scheme to solve the question of biased weighting. Although
the recognition accuracy is improved, it requires large volumes of labeled robot
body skeletons, which is time-consuming and labor-intensive to annotate in real
life.

Given this, self-supervised learning methods are introduced [13,14], which
can learn semantic content in large-scale unlabeled samples to provide super-
vised information for models and algorithms. The early emergence of various self-
supervised model building strategies, e.g., jigsaw puzzles [15], colorization [16],
prediction mask words [17], etc. With the emergence of the idea of contrastive
learning, some self-supervised contrastive learning methods are constructed for
3D skeleton data, e.g., ISC [18] makes exploit of inter-skeleton contrastive learn-
ing methods to learn feature representations from skeleton inputs of multimode.
Colorization [19] designs a skeleton cloud colorization technology to learn the
feature representation of samples from unlabeled skeleton sequences. However,
the above self-supervised learning works, ignoring the different views after skele-
ton augmentation can also be applied as an auxiliary tool to finding positive
samples.

Therefore, we propose a self-supervised action representation approach based
on Cross-View Nearest Neighbor Contrastive Learning (CrosNNCLR). Firstly,
the framework introduces the nearest neighbor search algorithm to look for more
semantically similar samples in the latent space by combining different views of
the same skeleton sequence skeleton augmentation. Secondly, CrosNNCLR loss
is proposed for the network to learn parameters more efficiently and minimize
the embedding distribution between nearest-neighbor sample views. Finally, the
proposed method is designed in a plug-and-play manner, which is integrated into
the traditional and existing self-supervised contrastive learning models to form
a new network structure. The main contributions of this paper are as follows:

• A plug-and-play block is designed using different views of each sample
data after augmentation, and the close association between similar skeleton
sequences, combined with the nearest neighbor search algorithm to find more
positive sample pairs from the latent space.

• CrosNNCLR loss is proposed to learn the network model parameters, capture
richer semantic information, enable better clustering of same category sam-
ples, and obtain a good feature space for 3D actions from unlabeled skeleton
data.

• The plug-and-play block is integrated into an existing self-supervised con-
trastive learning network to form new model structures. We evaluated the
model on three benchmark datasets, i.e., NTU RGB+D 60/120, PKU-MMD,
and outperforms the mainstreaming methods.
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Fig. 1. Comparison of recognition accuracy of different models, which can visu-
ally observe the recognition accuracy of each model, where the green cross symbol
and the red solid circle respectively indicate the proposed method CrosNNCLR and
CrosNNCLR*.

2 Related Work

Skeleton-based Action Recognition. To solve skeleton-based action recog-
nition tasks, previous work is based on manual features [20–22]. In recent years,
some approaches avail RNNs to process skeleton data in different time intervals,
e.g., VA-RNN [23] proposes a view adaptive neural network to automatically
transform skeleton sequences into observation viewpoints, eliminating the effect
of viewpoint diversity. Although these approaches have achieved many signif-
icant results, researchers shifted their attention to CNNs due to the gradient
disappearance question of RNNs, where VA-CNN [23] maps skeleton sequences
as RGB frames. HCN [24] automatically learn hierarchical co-occurrence fea-
tures of skeleton sequences. Considering that CNNs need to transform skeleton
sequences into a specific form, which is not conducive to the feature represen-
tation of the original skeleton data itself, further proposes GCNs to model the
graph structure of skeleton data, e.g., ST-GCN [25] proposes a spatial-temporal
GCN to solve the problem of human action recognition based on skeleton data.
In this work, we exploit ST-GCN [25] as the encoder.

Self-supervised Learning. Many self-supervised representation learning meth-
ods are employed to image and video classification. For RGB image data, MoCo
[26] establishes a dynamic dictionary to do the self-supervised representation
learning task by momentum contrast. OBow [27] incorporates knowledge distil-
lation technology into the self-supervised contrastive learning model and recon-
structs the bag-of-visual-words (BoW) representation of image features. For RGB
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video data, CoCLR [28] avails complementary information from different modali-
ties of the same data source to obtain positives from one view to another. Similarly,
NNCLR [29] proposes the self-supervised image classification method, compatible
with skeleton video data, RGB images have fewer actual practical application sce-
narios, as in real life, long videos are mainly used to record events.

Self-supervised Skeleton-Based Action Recognition. In recent years,
researchers have proposed many self-supervised learning approaches of skeleton
data, which are mainly divided into two types. The first one proposes encoder-
decoder structures, e.g., LongT GAN [30] reconstructs masked 3D skeleton
sequences by combining encoder, decoder, and generative adversarial networks.
P&C [31] adopt a weak the decoder to discriminate their embedding similarity.
The second is the contrastive learning network structures, e.g., CrosSCLR [32]
roots a cross-view consistent knowledge mining method, which exploits the fea-
ture similarity of one modality to assist another modality for contrastive recogni-
tion learning. AimCLR [33] explores the different patterns of movement brought
about by extreme augmentations to alleviate the irrationality of positive sample
selection. However, these methods rely on obtaining positive samples from dif-
ferent modal data or views after adding skeleton augmentation, and ignoring the
different views obtained after random skeleton augmentation can also be used as
auxiliary tools to find positives. Therefore, we introduce CrosNNCLR to obtain
positive sample pairs from nearest neighbors more concisely.

3 Approach

Although 3D skeleton data has made great progress in self-supervised contrastive
learning representation, some algorithms regard different views of each skeleton
as positive samples for the contrastive loss, i.e., only one positive sample exists.
While other algorithms employ multimodal skeleton data to acquire positive
samples of another modal skeleton view from one modal skeleton view, i.e., mul-
tiple positive samples exist. Unlike previous approaches [30–33], we apply differ-
ent views of the same skeleton sequence after skeleton augmentation to increase
the number of positive samples without using multimodal skeleton data. We
first describe the main approaches of skeleton-based self-supervised represen-
tation learning, e.g., SkeletonCLR [32] and AimCLR [33]. Second, we base on
the original model, establish a plug-and-play block, namely Cross-view Nearest
Neighbor Contrastive Learning framework for self-supervised action Representa-
tion (CrosNNCLR). This module exploits the Nearest Neighbor (NN) of original
positive samples to obtain more positives and enhance comparative instance
discrimination.

3.1 Problem Setting

Given a skeleton sequence x is subjected to the following operations for obtain
encoding features z = ψθ(aug(x)), ẑ = ψθ̂(aug(x)), where aug(·) denotes the
random data augmentation function and x generates different views q, k by
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aug(·), ψ denotes the ST-GCN network function with nonlinear projection layer,
ψθ enotes the Query encoder network whose network parameters are updated by
gradient descent method, ψθ̂ denotes the Key encoder whose network parameters
follow the momentum update.
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Fig. 2. Comparison between SkeletonCLR and CrosNNCLR, the left figure shows the
SkeletonCLR framework and the right figure shows our CrosNNCLR framework. where
X is the input N skeleton sequence data, x1, x2 are the different views obtained after
random skeleton augmentations, Query, Key are the encoder network, z1, z2 are the
encoding feature, MB is the memory bank, Ai(i ∈ 1, 2, 3, 4) is the positive sample
set, enqueue indicates that encoding feature enters the MB to update negatives, ⊗
indicates the dot product, copy indicates the copy function. InfoNCE, NNq→k and
NNk→q are the loss functions involved in each model.

3.1.1 SkeletonCLR

SkeletonCLR [32] is a single-view contrastive learning method based on skeleton
representation. As shown in Fig. 2(a). Firstly, the given sequence of skeletons
is randomly transformed into different views q, k that are regarded as positive
pairs, the other samples in the memory bank M = {mi}M

i=1 are considered neg-
ative samples, and q, k are embedded into the encoder ψθ, ψθ̂ to obtain the
encoding features z, ẑ, θ and θ̂ are the required parameters for both encoders,
θ̂ following the momentum update: θ̂ ← αθ̂ + (1 − α)θ, α is the momentum
coefficient. Secondly, similar to the MoCo [26], SkeletonCLR exploits a FIFO
strategy for updating negative samples in its memory bank to eliminate redun-
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dant computation. In other words, a certain number of negative sample tensors
are randomly generated when the model starts training, with the increase of
training iterations, the N -dimensional tensor z is continuously transferred into
the memory bank, replacing the previously randomly generated tensor as the
negative samples for the next iteration. Finally, SkeletonCLR employs InfoNCE
[26] loss to learn model parameter. The formula is as follows:

LInfoNCE = −log
exp(z·ẑ/τ)

exp(z·ẑ/τ) +
M∑

i=1

exp(z·mi/τ)
. (1)

where mi ∈ M, τ is a temperature hyperparameter, z·ẑ are normalized, and z·ẑ
represents the dot product of two tensors to find the similarity between them.

SkeletonCLR relies only on one positive sample pair generated by the same
sample under random data augmentation, while treating other samples as neg-
ative samples. This reduces the ability to discriminate intra-class variations,
as semantically similar samples are hard to cluster with other positives in the
embedding space.

3.1.2 AimCLR

The model framework of AimCLR [33] is shown in Fig. 3(a). Firstly, the model
proposes an extreme skeleton augmentation method and adds a Query encoder
branch to the dual branches of SkeletonCLR, which utilizes the method to data
amplify for the same sample. Secondly, a data augmentation method based on the
EADM is proposed, which can obtain different positives under the new branch
after adding the Query encoder branch. Specifically, in the original branch, the
same skeleton sequence is amplified by random normal skeleton augmentation,
then the sample features z, z̃ are obtained through the encoder and projection
layer (ψθ, ψθ̂), respectively. In the new branch, the same skeleton sequence is
amplified by extreme skeleton augmentation to form two parallel branches, one
of which passes through the encoder and projection layer (ψθ̂) to form the sample
features z̃, then others passes through the encoder, projection layer (ψθ) and the
EADM module to form the sample features z̃drop. Finally, the Nearest Neigh-
bor Mining (NNM) method with the multi-branch view is utilized to increase
the number of positives, and updates the network parameters using D3M loss
function. The specific loss function involved in the work is as follows:

Ld1 = −p(z | ẑ)logp(z | z̃) −
M∑

i=1

p(mi | ẑ)logp(mi | z̃). (2)

Ld2 = −p(z | ẑ)logp(z | z̃drop) −
M∑

i=1

p(mi | ẑ)logp(mi | z̃drop). (3)

LD3M = 1/2(Ld1 + Ld2). (4)
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LN = −log
exp(z·ẑ/τ) +

∑
i∈N+

exp(ẑ·mi/τ)

exp(z·ẑ/τ) +
M∑

i=1

exp(ẑ·mi/τ)
. (5)

where p(· | ·) is the conditional probability and mi ∈ M, N+ is the index value
of the similar samples obtained by NNM method. The numerator of the loss LN

shows that the increase number of positive pairs, prompting a better clustering
of more similar samples with high confidence.
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Fig. 3. Comparison between AimCLR and CrosNNCLR*, the left figure shows the
AimCLR framework and the right figure shows our CrosNNCLR* framework. Where
xi(i ∈ 1, 2, 3) are the different views obtained after random skeleton augmentations,
zi(i ∈ 1, 2, 3, 4) are the encoding feature, Ai(i ∈ 1, 2, 3, 4, 5, 6) is the positive
sample set, EADM is the new skeleton augmentation method. InfoNCE, D3M loss,
NNq→k and NNk→q are the loss functions involved in each model.

AimCLR employs embedding space that are most similar semantic informa-
tion to q, achieves better clustering by different views of samples from the same
category, but it ignores that view k also can be utilized for nearest neighbor
search.

3.2 Our Approaches

To increase the richness of latent similarity representation, beyond single-
instance positive samples and multi-instance positive samples generated by view
q, we propose a plug-and-play block that combines the cross-view (q, k) near-
est neighbor contrastive learning method to obtain more diverse positives. The
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model construction is similar to MoCo [26], but it obtains not only negative set
but also positive sample sets from the memory bank.

SkeletonCLR takes different views obtained by random skeleton augmenta-
tions as positive pairs, denoted as (z, ẑ). AimCLR utilizes the extreme skeleton
augmentation, EADM, and NNM approaches to generate three skeleton augmen-
tation pairs, which are paired to form positives, denoted as (z, ẑ), (z, z̃), (z, z̃drop).
Instead, we root the nearest neighbor search algorithm to find out multiple pos-
itives from the memory bank that is similar to z and ẑ semantic information,
denoted as (z, ẑ), (z, ẑ1), (z1, ẑ). In Figs. 2(b) and 3(b), similar to SkeletonCLR
and AimCLR, we acquire the negative samples from the memory bank and use
the idea of InfoNCE loss (1), we define the loss function as follows:

Lq→k = −log
exp(z·ẑ/τ) + exp(NN(z,M) · ẑ/τ)

exp(z·ẑ/τ) +
N∑

i=1

exp(z·mi/τ)
. (6)

where ẑ1 = NN(z,M) = argmin
mi∈M

‖ z − mi ‖2 is the nearest neighbor operation, τ

is the temperature hyperparameter, the numerator contains 2 positive samples.
The denominator contains N +1 samples in total, including 2 positives and N −1
negatives.

Similarly, the nearest neighbor instances in the feature space of view k can
be used as pseudo-labels. Therefore, the loss function equation is as follows:

Lk→q = −log
exp(z·ẑ/τ) + exp(NN(ẑ,M) · z/τ)

exp(z·ẑ/τ) +
N∑

i=1

exp(ẑ·mi/τ)
. (7)

where z1 = NN(ẑ,M), and the parameters are expressed the same as Eq. (6).
The two views take positive samples from each other to enhance the network
model performance and obtain better clustering results.

LCrosNNCLR = 1/2(Lq→k + Lk→q). (8)

The cross-view loss function LCrosNNCLR pulls in more high-confidence pos-
itive samples than the single-view loss function LInfoNCE, making it easier to
aggregate same category sample features in the embedding space.

3.2.1 CrosNNCLR Based on SkeletonCLR

This section focuses on using Nearest Neighbors (NN) to find out semantically
similar samples with view q or view k, and improve contrastive instance dis-
crimination methods. The concrete implementation framework of CrosNNCLR
is shown in Fig. 2(b). Firstly, CrosNNCLR is inserted into SkeletonCLR, which
compensates for the shortcoming that the original model treats same category
samples as negative samples. Secondly, CrosNNCLR loss is proposed to enhance
the InfoNCE loss-based approach. Finally, we evaluate the proposed approach
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Algorithm 1: CrosNNCLR(plug-and-play block) Pseudocode.

# Query, Key: encoder network
# N: batch size
# MB: memory bank(queue)
# t: temperature

for x in loader:
x1, x2 = aug(x), aug(x) # random augmentation
z1, z2 = Query(x1), Key(x2) # obtain the encoded features
h1, h2, mb = normalize(z1), normalize(z2), normalize(MB) # l2-normalize

NN1 = NN(h1, mb) # cross-view the nearest neighbor index
NN2 = NN(h2, mb) # cross-view the nearest neighbor index

loss = L(NN1, h2, h1)/2 + L(NN2, h1, h2)/2 # Loss_CrosNNCLR
loss.backward() # back-propagate
update([Query.params, Key.params]) # SGD update
update_queue(MB, z2)

def L(nn, c, d, t=0.07):
logits_cd = mm(c, d.T)/t # mm: Matrix multiplication
logits_nnc = mm(nn, c.T)/t # mm: Matrix multiplication
logits = concat([logits_cd, logits_nnc], axis=1) # logits_qk, logits_kq
labels = range(N)
loss = CrossEntropyLoss(logits, labels)
return loss

def NN(h, mb):
simi = mm(h, mb.T) # mm: Matrix multiplication
nn = simi.argmax(dim=1) # Top-1 NN indices
return mb[nn]

with the linear evaluation protocol, and carry out relevant experimental verifi-
cation on three benchmark datasets. Algorithm 1 provides the pseudo-code for
the pre-training task of CosNNCLR.

3.2.2 CrosNNCLR* Based on AimCLR

This section focuses on using Nearest Neighbors (NN) to find samples that are
semantically similar to view k. The feature representation is learned by pulling
the distance between different views of each sample and the nearest neighbor
samples in the embedding space. The specific implementation framework of
CrosNNCLR* is shown in Fig. 3(b). Firstly, CrosNNCLR branch is integrated
into the AimCLR, which alleviates the reliance of self-supervised learning on
the data augmentation approach. Secondly, CrosNNCLR loss is added to the
D3M loss to improve contrastive instance discrimination methods. Finally, we
evaluate the proposed approach with the linear evaluation protocol, and carry
out relevant experimental verification on three benchmark datasets.

4 Experiments

In this section, our CrosNNCLR and CrosNNCLR* are compared with other
self-supervised skeleton representation learning approaches. The datasets (Sub-
sect. 4.1) and experimental settings (Subsect. 4.2) for CrosNNCLR and
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CrosNNCLR* are described. In Subsect. 4.3, the model performance is com-
pared. In Subsect. 4.4, ablation experiments are performed to demonstrate the
effectiveness of the proposed methods.

4.1 Datasets

NTU RGB+D 60 (NTU-60) [34]. It consists of 56,880 action sequences. The
dataset is captured from different viewpoints, with action samples performed by
40 actors, and contains 60 action categories. Two evaluation benchmarks for this
dataset are utilized: Cross-Subject (xsub) and the Cross-View (xview).

PKU-MMD (PKU) [35] . It is a human action analysis benchmark dataset with
good annotation information. It specifically consists of 28,000 action sequences,
with 51 action classes. PKU-MMD is divided into two parts, the first part (part
I) is a large-amplitude action detection task and the second part (part II) is a
small-amplitude action detection task.

NTU RGB+D 120 (NTU-120) [36] . It is an extension of the NTU-60 dataset,
which contains 120 actions performed by 106 actors, and the total number of
action skeleton sequences expanded to 114,480. Similarly, two evaluation bench-
marks for this dataset are utilized: Cross-Subject (xsub) and Cross-Setup (xset).

4.2 Experimental Settings

The hardware platform in this experiment includes four TITAN XP graphics
cards with 128 GB memory, the software platform includes python 3.6 and the
PyTorch 1.2.0 framework. The parameter configuration of CrosNNCLR is con-
sistent with the SkeletonCLR, where the models run 800 epochs and the linear
evaluations run 100 epochs. The parameter configuration of CrosNNCLR* is
consistent with the AimCLR, where the models run 300 epochs and the linear
evaluations run 100 epochs. Specifically, during the training of these models, the
Query and Key encoders mainly use the ST-GCN network with a hidden layer
dimension of 256, a feature dimension of 128, the batch size is 128, the momen-
tum coefficient α = 0.999, M = 32768, and the initial lr = 0.1, which becomes
0.01 after 250 epochs, the weight decay is 0.0001, the initial value of the learning
rate for linear evaluation is 0.3, which became 0.03 after 80 epochs of evaluation.

4.3 Analysis of Experimental Results

We design a plug-and-play block for enhancing positives, which utilizes
CrosNNCLR to identify sample instances in the latent space. It means that
sample instances with semantic information more similar to different views will
be mined, and take them as positive samples. This subsection mainly gives the
experimental results of CrosNNCLR and CrosNNCLR*.

Experimental studies are conducted on different datasets to compare the
model performance. As shown in Table 1, on the single mode of skeleton dataset
(joint, motion, bone), the action recognition of our CrosNNCLR is higher than
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the SkeletonCLR, except for the motion modality under the xset benchmark
on the NTU-120 dataset, and the bone modality under the xsub evaluation
benchmark on the NTU-60 dataset. The performance of our 3s-CrosNNCLR
is better than the 3s-SkeletonCLR, when the evaluation effects of these three
modalities are fused.

Table 1. Comparison of SkeletonCLR and CrosNNCLR linearity evaluation results on
the NTU-60/120 and PKU datasets. “3s” means three stream fusion.

Method Stream NTU-60(%) PKU(%) NTU-120(%)

xsub xview part I xview xset

SkeletonCLR joint 68.3 76.4 80.9 56.8 55.9

CrosNNCLR joint 73.2 81.0 81.3 62.5 64.3

SkeletonCLR motion 53.3 50.8 63.4 39.6 40.2

CrosNNCLR motion 56.7 62.0 67.4 41.4 36.4

SkeletonCLR bone 69.4 67.4 72.6 48.4 52.0

CrosNNCLR bone 64.3 72.9 77.0 60.4 64.3

3s-SkeletonCLR joint+motion+bone 75.0 79.8 85.3 60.7 62.6

3s-CrosNNCLR joint+motion+bone 76.0 83.4 86.2 67.4 68.3

As shown in Table 2, our CrosNNCLR* is compared with the original Aim-
CLR on three modal datasets. On the skeleton single-modal dataset (joint), our
CrosNNCLR* is better than the AimCLR. On the other skeleton modal datasets
(motion, bone), the effect of our presented model is similar to the original model’s
performance. When three modalities are fused, the recognition performance of
our 3s-CrosNNCLR* is superior to the 3s-AimCLR on the xsub60, PKU part
I, and xset120, our model’s recognition is similar to the original model on the
xview60 and xsub120.

Table 2. Comparison of AimCLR and CrosNNCLR* linearity evaluation results on
the NTU-60/120 and PKU datasets. “3s” means three stream fusion.

Method Stream NTU-60(%) PKU(%) NTU-120(%)

xsub xview part I xview xset

AimCLR joint 74.3 79.7 83.4 63.4 63.4

CrosNNCLR* joint 75.2 79.7 83.8 63.8 64.9

AimCLR motion 66.8 70.6 72.0 57.3 54.4

CrosNNCLR* motion 66.1 69.8 72.8 56.4 54.9

AimCLR bone 73.2 77.0 82.0 62.9 63.4

CrosNNCLR* bone 72.8 77.2 83.9 63.1 65.7

3s-AimCLR joint+motion+bone 78.9 83.8 87.8 68.2 68.8

3s-CrosNNCLR* joint+motion+bone 79.2 83.7 88.6 68.0 69.9

Through the above experiments, the overall results show the model can not
only enhance the expression of semantic relevance among different views of the
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same skeleton sequence, but also learn the low-level semantic information of the
skeleton samples, and the recognition of the proposed method with different
modalities of the skeleton data is verified through comparative experiments.
We explain this result by that the model construction can take advantage of
the close correlation among the views of the skeleton data, integrate the idea of
CrosNNCLR, find out the semantically similar samples with view q, k as positive
sample pairs, change the original model’s method of obtaining more positive
pairs, and capture richer view information.

4.4 Analysis of Ablation Experiment Results

To verify the effectiveness of our CrosNNCLR and CrosNNCLR* model for
representation learning, we compare them with the latest unsupervised action
recognition works, including AS-CAL, ISC, Colorization, LongT GAN, MS2L,
P&C, SkeletonCLR, CrosSCLR and AimCLR, etc. It is also compared with
a small number of fully-supervised action recognition models, including Part-
Aware LSTM, VA-RNN, Soft RNN, and ST-GCN, etc. The ablation experiments
are mainly carried out on the NTU-60/120 and PKU datasets.

Table 3. Comparison of experimental accuracy on the NTU-60 dataset (joint).

Method xsub(%) xview(%)

LongT GAN(AAAI 18) 39.1 48.1

MS2L(ACM MM 20) 52.6 –

P&C(CVPR 20) 50.7 76.3

AS-CAL(Information Sciences 21) 58.5 64.8

SkeletonCLR(CVPR 21) 68.3 76.4

CrosSCLR(CVPR 21) 72.9 79.9

AimCLR(AAAI 22) 74.3 79.7

CrosNNCLR(ours) 73.2 81.0

CrosNNCLR*(ours) 75.2 79.7

Table 4. Comparison of experimental accuracy on the NTU-60 dataset (joint+
motion+bone).

Method xsub(%) xview(%)

3s-Colorization(ICCV 21) 75.2 83.1

3s-SkeletonCLR(CVPR 21) 75.0 79.8

3s-CrosSCLR(CVPR 21) 77.8 83.4

3s-AimCLR(AAAI 22) 78.9 83.8

3s-CrosNNCLR(ours) 76.0 83.4

3s-CrosNNCLR*(ours) 79.2 83.7
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Results of Linear Evaluation on the NTU-60 Dataset. As shown in
Table 3, for the skeleton single-modal data (joint), the recognition accuracy of
our CrosNNCLR respectively increases 4.9% and 4.6% over the original Skele-
tonCLR on the xsub and xview benchmarks dataset, then by 0.3% and 0.1%
over the cross-modal contrastive learning CrosSCLR on the xview benchmark
dataset, respectively. On the xsub benchmark dataset, the recognition accuracy
of our CrosNNCLR* is 0.3% higher than the AimCLR. On the xview bench-
mark dataset, the recognition effect of our CrosNNCLR* is equal to the original
AimCLR.

In Table 4, the performance of skeleton multimodal data (joint+motion
+bone) is given. We can see that our 3s-CrosNNCLR respectively obtains 76.0%
and 83.4% recognition accuracy, the presented 3s-CrosNNCLR* obtains 79.2%
and 83.7% recognition accuracy respectively. Compared with the other models,
these results further demonstrate the effectiveness of CrosNNCLR.

Table 5. Comparison of experimental accuracy on the PKU dataset (joint).

Method part I(%) part II(%)

Supervised:

ST-GCN(AAAI 18) 84.1 48.2

VA-RNN(TPAMI 19) 84.1 50.0

Self-supervised:

LongT GAN(AAAI 18) 67.7 26.0

MS2L(ACM MM 20) 64.9 27.6

3s-CrosSCLR(CVPR 21) 84.9 21.2

ISC(ACM MM 21) 80.9 36.0

3s-AimCLR(AAAI 22) 87.8 38.5

3s-CrosNNCLR*(ours) 88.6 44.7

Table 6. Comparison of experimental accuracy on the NTU-120 dataset (joint).

Method xsub(%) xset(%)

Supervised:

Part-Aware LSTM(CVPR 16) 25.5 26.3

Soft RNN(TPAMI 18) 36.3 44.9

Self-supervised:

P&C(CVPR 20) 42.7 41.7

AS-CAL(Information Sciences 21) 48.6 49.2

3s-CrosSCLR(CVPR 21) 67.9 66.7

ISC(ACM MM 21) 67.9 67.1

3s-AimCLR(AAAI 22) 68.2 68.8

3s-CrosNNCLR*(ours) 68.0 69.9
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Results of Linear Evaluation on the PKU Dataset. Table 5 gives a com-
parison of the current state-of-the-art approaches. Firstly, our 3s-CrosNNCLR*
respectively achieves 88.6% and 44.7% recognition accuracy on the part I
and part II datasets, which gains 0.8 and 6.2% points better than the orig-
inal 3s-AimCLR, respectively, and higher than other algorithms. Secondly,
the self-supervised learning approaches achieve higher recognition than some
fully-supervised models, e.g., ST-GCN and VA-RNN, demonstrating that
CrosNNCLR has a strong discriminatory ability to distinguish the motion pat-
tern caused by skeleton noise.

Table 7. Comparison of linear evaluation results of SkeletonCLR and CrosNNCLR at
different epochs on the NTU-60/120 datasets (joint).

Method Datasets 300ep 400ep 500ep 600ep 700ep 800ep 900ep 1000ep

SkeletonCLR xsub60 68.3 70.0 70.0 70.4 70.4 69.7 70.6 70.6

CrosNNCLR xsub60 70.8 71.4 71.9 72.7 73.4 73.2 73.5 73.7

SkeletonCLR xview60 76.4 74.9 74.3 74.1 74.0 73.7 73.6 73.1

CrosNNCLR xview60 76.5 78.4 79.4 80.0 80.7 81.0 80.7 80.9

SkeletonCLR xsub120 56.8 56.0 56.1 56.1 56.1 56.3 55.8 55.5

CrosNNCLR xsub120 60.7 61.8 62.0 62.1 62.4 62.5 62.7 62.7

SkeletonCLR xset120 55.9 54.7 54.9 55.2 54.9 54.1 54.6 54.7

CrosNNCLR xset120 62.2 62.8 63.4 63.8 64.0 64.3 64.5 64.8
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Fig. 4. CrosNNCLR vs SkeletonCLR Training curves and linear evaluation curves
for xview60 linear evaluation.

Results of Linear Evaluation on the NTU-120 Dataset. As shown in
Table 6, on the xsub benchmark dataset, our 3s-CrosNNCLR* achieves 68.0%
recognition accuracy, which is similar to the 3s-AimCLR. On the xset benchmark



CrosNNCLR 251

dataset, our 3s-CrosNNCLR* achieves 69.9% action recognition accuracy, which
gains 1.1% improvement over the original 3s-AimCLR. In fully-supervision, the
accuracy of the proposed algorithm is better than some methods, e.g., Part-
Aware LSTM and Soft RNN, which verifies the validity of the proposed model
again.

Selection of Epoch Values for CrosNNCLR. Given the skeleton single-
modal data (joint), corresponding experiments are conducted on four datasets
from the NTU-60/120 to select the epoch values suitable for our CrosNNCLR.
Firstly, Table 7 and Fig. 4 show the performance of CrosNNCLR is superior to
SkeletonCLR after 300 epochs on single-modal (joint), while the model does
not converge. In contrast SkeletonCLR no longer has a significant increase in
loss and accuracy after 300 epoch, proving that the model has reached conver-
gence. Furthermore, the performance of our CrosNNCLR continues to improve
when the loss value continues to decrease. At 1000 epochs, the proposed method
obtains 73.7%, 80.9%, 62.7%, and 64.8% recognition accuracy respectively, fur-
ther increasing the gap to 4∼8% points. Finally, we select the experimental
results at 800 epochs training as the final evaluation results, mainly due to the
weak feature expression of the model at the beginning of training, it is unable
to learn deeper semantic information. As the number of iterations increases, the
network will learn richer semantic representation and promote the convergence
of the network model.

Table 8. Performance with only crop augmentation (joint) for xview60 linear evalua-
tion.

Method SkeletonCLR CrosNNCLR AimCLR CrosNNCLR*

Full aug. 76.4 81.0 79.7 79.7

Only crop 51.5(↓ 24.9) 63.0( ↓ 18) 53.3(↓ 26.4) 54.6(↓ 25.1)

Table 9. Embedding size (joint) for xview60 linear evaluation.

Embedding size 128 256 512 1024

Top-1 76.8 81.0 77.6 80.7

Top-5 96.4 97.2 96.8 97.2

Table 10. Memory bank size (joint) for xview60 linear evaluation.

Queue size 256 512 1024 2048 4096 8192 16384 32768

Top-1 75.5 74.5 78.2 78.7 74.2 79.0 77.6 81.0

Top-5 96.3 95.7 96.8 96.8 96.0 96.9 96.7 97.2
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Data Augmentation. Both SkeletonCLR and AimCLR rely on multiple data
augmentation methods to obtain the best performance. However, CrosNNCLR
and CrosNNCLR* do not rely too much on complex augmentation approaches,
because a richer real column of similar samples can be obtained from the cross-
view nearest neighbors. As shown in Table 8, we remove the complex data aug-
mentation methods and keep only one data augmentation method, random crops.
Although the method proposed in this paper also benefits from complex data
augmentation operations, CrosNNCLR relies much less on its removed data aug-
mentation operations in comparison.

Embedding Size. As shown in Table 9, four embedding sizes have been selected
for comparison, i.e., 128, 256, 512 and 1024, from which we can see that our
CrosNNCLR is more robust and finds similar recognition results for different
embedding sizes.

Memory Bank Size. Enhancing the number of samples in the memory bank
usually improves the model performance, and the experimental results are shown
in Table 10, which has a peak value of 32768. Overall, Using a larger memory
bank in the cross-view nearest neighbor method increases the probability of
capturing similar samples.

Fig. 5. The t-SNE visualization of the embedding features of SkeletonCLR, AimCLR,
CrosNNCLR, and CrosNNCLR* on the xsub and xview dataset of NTU-60, where
the first-row visualization results include: t-SNE(SkeletonCLR) and t-SNE(AimCLR)
on the xsub and xview datasets. The second-row visualization results include: t-
SNE(CrosNNCLR) and t-SNE(CrosNNCLR*) on the xsub and xview datasets.

Qualitative Analysis Results. To verify the effectiveness of inserting
CrosNNCLR modules into existing models, the t-SNE [37] dimensionality reduc-
tion algorithm visualizes the embedded features distribution of SkeletonCLR,
AimCLR, CrosNNCLR, and CrosNNCLR*. As shown in Fig. 5, 10 classes from
the xsub and xview datasets of NTU-60 are selected for embedding comparisons.
Compared to SkeletonCLR and AimCLR, the proposed method CrosNNCLR
and CrosNNCLR* can cluster the embedding features of the same class more
compactly, and separate the embedding features of different classes.



CrosNNCLR 253

Quantitative Analysis Results. To more clearly and intuitively compare the
action classification results of SkeletonCLR and CrosNNCLR, we plot the test
results into a confusion matrix on the NTU-60 dataset. As shown in Fig. 6, we
compare the 10 kinds of actions single-modal (joint) of xsub and xview datasets.
In general, our CrosNNCLR is more accurate than SkeletonCLR in most of the
actions, e.g., the classification of “eat meal” increased from 48% and 63% to
55% and 73%, respectively. The classification accuracy of CrosNNCLR is similar
to SkeletonCLR for a few actions, e.g., 48% and 46% for “clapping” under the
xsub evaluation benchmark, respectively. Thus, the conclusion is validated that
our CrosNNCLR model can improve the feature representation of each type of
action.

Fig. 6. Comparison of the confusion matrix on NTU-60 datasets

5 Conclusion

In this paper, a generic module called Cross-View Nearest Neighbor Contrastive
Learning framework for self-supervised action Representation is proposed to
obtain more positives. Our CrosNNCLR, as a view-level block, can be applied to
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existing contrastive learning architectures in the plug-and-play manner, bringing
consistent improvements. Moreover, under various linear evaluation protocols,
our method outperforms previous state-of-the-art methods on the NTU-60/120
and PKU datasets, demonstrating that the model has good generalization in low-
probability learning scenarios. In future work, we will study the self-supervised
action recognition based on robot body skeletons, aiming at active human-robot
collaboration and lightweight recognition model with knowledge distillation tech-
niques.
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